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A study is presented of asymptotically normal dynamical semigroups for which 
there exists a faithful normal state satisfying the detailed balance condition. 
Such dynamics reveals a return to a stationary state if additionally a weak 
cluster property is assumed. The generalized stability condition and generalized 
wave operators are introduced. The theory is illustrated by models. 
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1. I N T R O D U C T I O N  

Recently, the generalization of scattering theory ideas to the framework of 
C*-algebra has made very interesting progress. (1 3) These investigations 
assume reversible dynamics, i.e., that the dynamics under consideration is 
given by a one-parameter group of automorphisms on a C*-algebra. 

On the other hand, analysis of scattering theory for systems with 
irreversible dynamics has been carried out, i.e., dynamics is assumed to be 
given by a one-parameter semigroup of linear transformations, and the 
above-mentioned results are formulated in the Hilbert space language. (4-6) 
For that reason it is interesting to ask whether one can combine the C*- 
algebraic approach in the scattering theory with the assumption of irrever- 
sibility of dynamics. My aim is to give an affirmative answer to this ques- 
tion. To be more specific, I will discuss the relation of scattering theory to 
the approach to equilibrium in statistical mechanics. This will be done 
under the additional assumptions that the considered dynamics is 
asymptotically normal as well as that there exists a faithful state which 
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satisfies the detailed balance condition with respect to the semigroup 
dynamics z,. Furthermore, the study of "generalized" wave operators and 
results concerning the stability of dynamics are presented. In the final sec- 
tion I present comments and illustrative models. I want to point out that 
one can consider part of these results as an extension of Tropper's results C7~ 
to a quantum model. 

For  a detailed description of the dynamical semigroup in statistical 
mechanics and physical models see Majewski. ~8) 

2. PRELIMINARIES A N D  A S S U M P T I O N S  

Let 93/be a W*-algebra. We assume that 9~ acts on a complex Hilbert 
space ~ and that (2 ~ ~ff is a cyclic and separating vector for 93~. The faith- 
ful state on 93/defined by s will be denoted by co, i.e., co(A) = (s At2) for 
A ~gJ/. Let T, be a strongly positive 2 [-r~(A*)rt(A)<~T~(A*A) for A ~gJ/] 
dynamical semigroup on 93L In particular, ~, is a normal map for each 
t > 0. The triple ( ~ ,  ~ ,  co) will be called a dynamical system when co is the 
v-invariant (normal, faithful) state. 

We restrict ourselves to the class of dynamical systems satisfying the 
following two conditions: 

Condi t ion I (Detailed balance condition~9~). A normal faithful state 
co of 93/satisfies the detailed balance condition with respect to a dynamical 
semigroup rt whenever 

coof,=co,  t~>0 (1) 

co(A*z , (B) )=co( t r (B*)z t ty (A) ) ,  A , B ~ g J I ;  t>~O (2) 

where a denotes a reversing operation on 9~, i.e., a: 93/~ ~ is an antilinear 
Jordan automorphism of order two. 

C o n d i t i o n  II. A dynamical system is called asymptotically normal 
if 

lira co(z,(A) z,(B)) = lira co(z[(A) zT(B)) 
t ~  t ~ o U  

(3) 

for A, B ~ 99l, where zt  = tro zt o a and a is the reversing operation. 
In the Appendix we give a model which cleary shows that detailed 

balance condition and Condition II are compatible. 

2 Note that as vt is positive, it is automatically self-adjoint, i.e., zt(A* ) = z,(A)* for all A e 9"B. 
See, e.g., Kadison's argument in Lemma 8, ref. 22. 
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The definition 

ftAt2 af rt(A)s 

gives a weakly continuous semigroup of contractions on ~ such that 
f~t2 = t?, t >i 0. In the sequal, ~, will be called a dynamical semigroup on 
the Hilbert space Jg. 

As t? is a cyclic and separating vector for ~ ,  there exists a modular 
operator A and a modular conjugation J e  by the Tomita-Takesaki theory. 
Let V~ be the weak closure of the set of vectors {A~At2; A ~ gJ~, A >~ 0}, 
where c~ s [0, 1/2]. The quantity V1/4 will be denoted by N and called the 
natural cone. 

An important property of V~ is that the dual of V~ is 
V m ~ (ae  [0, 1/4]). 

In the sequal, the set of all states on ~Jl will be denoted by S(~JI), and 
the set of all normal states on gX will be denoted by 5P(~). We will need 
the following subset of 5P(gJl): 

o _ ~< c~(o for a positive number ~ } ~ ,  - {~o e ~ ( ~ ) ;  q~ 

It is easy to see that ~o.  is a norm dense subset of $~ ). The linear ver- 
sion of the Radon Nikodym theorem states that there exists a ~b(~)e V0 
such that et?-r Vo and 2~o(A)= (r (/2, A~b(~)) for any state 
q~egX ~ and A egJl. 

Finally, we will need also the conjugation J :  Jg--* ~ induced by a, 
i.e., JAr2  =~r(A) f2 for A e ~ .  (in general, ] ~  r 1 6 2  

3. RETURN TO E Q U I L I B R I U M  

In this section we examine the long-time behavior of the dynamical 
system (~Y~, zt, co) for which Conditions I and II are satisfied. 

As a starting point, let us consider the question of existence of the 
weak *-limit of z*rp, where q~ is a normal state and ~* denotes the dual 
semigroup, i.e., (~*~o)(A) = (p(z,(A)) for A e ~ ,  t ~> 0, (p ~ ~ . .  

We will need the following subset of 9)l: 

where 

9~(~) = N(r) n N(T) + 

N(z)  = {A ~ ~I)l; z , (A*A)  = z,(A)* z,(A), t > 0} 

N(z)  + = {A ~?0~; z , ( A A * ) = z , ( A )  z,(A)*, t > 0 }  
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Note that gl(z) is the largest z-invariant W*-subalgebra of 9Jl on which z, 
is equal to a group of automorphisms. (1~ 

Remark. To prove that z, maps 9l(z) onto 91(z) it is enough to 
examine % as a normal, faithful *-morphism ~,: g l ( z ) ~  91(z) such that 

(~, A~) = (~, ~t(A) ~)  

for A e 9l(~), where I2 e gt(r)f2 = ~ is a cyclic and separating vector for 
9l(~). 

Further, let us reformulate Conditions I and II (see Section 2). Condi- 
tion I implies 

"~,gJ/+ f2 c 9J/+t2 and ~V0 c Vo 

where ~ + = {A e 9Jl; A t> 0 }. Moreover (see p. 40 in ref. 11 ) 

s-lim ~*~t= Q~ 
t - -*  + o o  

always exists. 
It can be noticed that "~*r Hence Q ~ 9 ~ + ~ 2 c ~ + f 2  

and then ~ Q*gJl+f2cgJ/+f2. Thus, by another result of Bratteli and 
Robinson (12) there exists a positive map q~ of 9J/into 93l such that 

q~(A ) s = Q~Ag2 

for all A e 9Jl. On the other hand, 

lim co(r,(A) r,(B)) = co(q'(A) B)) 
t ~ o o  

lim co(rT(A) r~(B)) = co(ao q~o ~r(A) B) 
t ~ o v  

Therefore, for the dynamical system (gJl, ~,, co) with ~,-invariant, faithful, 
normal state o9 satisfying the detailed balance condition the Condition II is 
equivalent to the following property of a: 

a . q ~ . ~ = q  ~ (*) 

Remarks. (i) It should be noted that the set of all reversing 
operators ~ is now restricted by condition (,). This can be considered as 
a clarification of the meaning of Condition II. 

(ii) In the Appendix we give an example which clearly shows that the 
detailed balance condition and condition ( ,)  do not exclude each other, 
but are easily compatible. 

Now we can formulate the following result. 

T h e o r e m .  Let (931, ~t, co) be a dynamical system. Furthermore, let 
us assume that co satisfies the following: 
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(i) The detailed balance condition with respect to ~ and such a fixed 
reversing operation a that 

aq~a = q* 

(ii) There is a limit of the function 

~+ ~ t~co (Az , (B ) )  

when t ~ ~ for all B e  91(z) and all A egJ/o (where 9~ o is a a-weakly dense 
z-invariant *-subalgebra of 93/). Then, it follows that the limit 

9 + ( A ) =  lira ~o(rt(A)) 
t ~ -bOO 

exists for all A egJl and all normal states on gJt, i.e., the system 
(gJ~, ~,, co, ~0) manifests "a return to equilibrium." 

Remarks. (i) Let us observe that the condition (i) of the theorem 
is satisfied for the semigroup evolution zt described in our model (see 
Section 4); "~, in this model is in fact a self-adjoint semigroup. 

(ii) One can say that condition ( , )  or equivalently Condition II 
means the asymptotic normality of ~ ,  i.e., s-lim,~ ~ ~*r = s-lim~_~ ef t*  
(see the proof of the lemma below). 

We will need the following lemma. 

I . emma .  Adopt the assumptions of the theorem. Then 

w-lim "~*'~t = Q':( -  Q ) 
t ~ - t - o o  

is an orthogonal projection on a subspace of Yr. 
Moreover l im,~ ~ [[~,(1 - Q ) f [ [  = 0 for any f e  Yg and ?, [Q~,~ is a one- 

parameter unitary semigroup on Q ~ .  

Proof. First, let us observe that 

~(aq~a(A) B) = ~o(a(B*) q~a(A*)) 

= lim (JBO,  i*g,~CA*f2) 
t ~ - t-oO 

= lim (~,JB~?, ~ ,JA*f2)  

= lim ( J r163  J ~ , J B ~ )  
t ~  - b e t )  

= lim ('~/~*A*Y2, Bg2) 
t ~ + o O  
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for A, B~ 9Jl. Hence, it is easy to see that condition (,) implies 

lim ( f , r  Bf2)=m(crq~a(A)  B)=c0(q~(A)  B) 
t ~  h-o(3 

= lim (f*r BI2) (4) 
t ~  -I-oO 

Next recall that for any contraction semigroup r~ on ~ ,  s-lim r Q 
exists and obviously Q/> 0, IIQII ~< 1. The equalities (4) imply 

s-lim i * f t =  s-lim " f t ' f*=Q (5) 

Further, let us observe that 

fsQr lim e s f t i * f * =  lim f t + / f * , = Q  
t ~  + c o  t ~  +OO 

for any s > 0. Also, for any s > 0, 

f*Q~s= lim ~*i*~fis= lim 

Therefore 

"fs Qr = Q 

.f*.~ Q.g* = f * Q  

.f *f ~ Q f  *.f , = f *Q.f ~ = Q 

Q = ;~ 2 dE(2) 
(Q) 

with a ( Q ) =  {0, 1 }. But this means that Q is an orthogonal projector. 
Now, let us consider 

lim IIL(~-Q)fLI2= lim ( f , f - f , Q f , ' f , f - ' ~ , Q f )  
t - -*  + o o  t ~  + ~  

(Q f, f )  + (Q f, Q2f) = 0 = (Q f ,  f )  _ (Q f ,  Q f )  _ 2 

g * , f , + , =  Q 

Hence 

Q =  w-lim ( i* f sQ~/2) (Q~/2 f* f , )=  Q3 
S - ~  + o o  

Thus, using the spectral theorem, it is easy to see that 
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Next, one finds that 

lim IIr 2= lim ( Q f  r  HQftl 2 

Since ft is the semigroup of contractions, then the above equalities imply 

I I L Q f l l  = IIQftl 

for any t > 0. Furthermore, condition ( , )  implies 

J Q J  = Q 

Hence, for t > O, 

I IL*Qfl l  = I I J L J Q f l l  = I I L Q J f l l  

= l l a J f l l  = I l J O f l l  = IIQftl  

Therefore 

O J g =  { f ~  Jg; ]lftfll = Itfll, t>~0} c~ { f ~  J r ;  Ilf*fll = Ilfll, t~>0} 

Applying the argument given in ref. I1, p. 9, one concludes that Q Jr ~ is 
f-invariant and f lQg is a one-parameter unitary group on QJF. 

Proof of  Theorem. Let 40 be in 991~ (cf. Section 2). Therefore 

240(zt(A)) = (~, z,(A) f2) + (a,  "ct(A ) ~) 

where ~b ~ V 0. The lemma implies 

lim (z*40)(A) = �89 lim [(~b, r163 + ('ftQA*s ~b)] 
t---~ + c O  t ~  + c O  

Observe that for any B~9~(z), A ~93l, 

( f* i ,BO,  AQ ) = ('~tBs "~,As ) = ( BQ, As 

where the second equality follows from the automorphism property of 
z I~(~) and the Cauchy-Schwarz inequality applied to the forms 

f,(A, B ) =  (Bt2, A f 2 ) -  (LBf2, f,Af2) 

Therefore 

((1 - Q )  B(2,  A O )  = lim ((~ - -  f * i , )  B O ,  A O )  = 0 
I ~  + c O  
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Hence 
Qgl(T)/2 = 91(r)/2 (6) 

Next, let us recall that one can define a positive map q of ~0l into 992 such 
that q(A)/2=QA/2 for all AEgJI. From ref. i0, p. t38, it follows that q 
maps ~ onto 9l('c) and Q ~< [gt(r) /2] .  Thus, this result and formula (6) 
imply 

Q = projector on the closure of Tl(r)/2 (7) 

Consequently, Condition (ii) of the theorem and formula (7) imply 
limt~ +o~(~*~0)(A) exists for q)~gJ/~ and A e 921/. Thus, the statement of the 
theorem follows immediately, since the subset 931 ~ is dense in the set of all 
normal states of 931. 

Remark. Condition (ii) of the theorem is a weak cluster property 
of the state. There are stronger cluster properties (see, for example, 
Robinson (1~ which are equivalent to z-ergodicity of co. It seems fair, 
therefore, to say that Condition (ii) means that co should have a relatively 
"pure" form. Moreover, note that Condition (ii) is a weak cluster property 
since there is the restriction to subalgebra gl(r), i.e., to the largest subset 
of observables on which the semigroup time evolution is, in fact, the 
reversible one. 

The above theorem leads directly to the following corollary. 

Corollary. Let the dynamical system (9)l,~t, co ) satisfy Condi- 
tion (i) of the theorem. Moreover, let 

lim co(Art(B)) = co(A) co(B) (8) 
l ~  + 0 ( 3  

for all A ~ 9Jl o, B E 91(~), where the above limits exist uniformly in B e 91(~). 
Then, the following limits exist: 

1. w-limt~ +~ r it 

2. limt~+~o(~toa_t(A)) for q~SP(~Jt) and AegJl. Here at(.) 
denotes the group of modular automorphisms on ~ ,  i.e., at(A)= AitAA-", 
t eN.  

ProoL By the equality (8), 

lira co(A~t(a_t(B)))= co(A) co(B) 
t ~ - t - o o  

for A e ~ l  0, Be  gl(~). Hence 

lim 
t ~  q - o o  

(~b, "gtA- itB/2) 
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exists for r e {At'2; A e 9J/o}, B e 9~(r). Consequently, w-lim,~ +~ f , A - "  
exists [since f , ( 1 - Q ) ~ ' 0 ] .  The second statement follows directly 
from the first one and the Radon-Nikodym theorem described in Section 2. 

Remark. Let us consider the strong mixing property 

lim co(Ar,(B))=co(A)co(B), A,B~gJI (9) 
t ~ -~-OO 

Clearly, we have used this kind of assumption in our corollary, and 
(9) is a much stronger cluster property of the dynamical system (9~, ~,, co) 
than we have assumed in the theorem. Thus, it is worth mentioning an 
interplay between strong mixing and weak asymptotic Abelianess. 

Namely, if in addition to the assumed properties of the dynamical 
system (~ ,  r,, co) we would add that co is a primary state, then a slight 
modification of argument given in ref. 2, p. 396 shows that weak asymptotic 
Abelianess, 

co(C[A, zt(B)] D) t-~ +~ ' 0 

A, B, (7, D~932, and strong mixing are actually equivalent (see also 
Winnink(~3)). 

Now, we can formulate the following. 

Def in i t ion .  We define the map 7*' 5e(gJ/) ~ S(gJ/) by 

(?*~o)(A)=q~(A)= lim ((ztoa t)* ~o)(A) 

for A e 992, and the map 7 +:gY~ ~ 9~ by transposition, i.e., 

~0(7+(A))= lim ~o(ztoa t(A)) 
t ~  4 - o 0  

for A~9~, cp ~.5~(931). 
Now let us comment on the above definition. The scattering theory 

normally involves a comparison of two different dynamics of the same 
system: the given dynamics describing an interacting system and a "free" 
dynamics. We assume that the given dynamics is a dynamical semigroup. 
Usually such semigroups arise when the uncontrollable influence from the 
outside is taken into account in a phenomenological manner by including 
absorptive or decay terms in the interaction. On the other hand, the 
Tom~ta-Takesaki theory implies that the state co satisfies the KMS condi- 
tion with respect to the modular dynamics. Thus, one would believe that 
the modular dynamics is a proper candidate for the "free" dynamics. There- 

fore, the map ~+ introduced by the above definition is the algebraic 
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analogue of  the wave operators of scattering theory. (Observe that the 
corollary implies the correct definition of 7+.), It is straightforward to 
check that 7 + is a linear unital and positive map, but 7 + fails in general 
to be a normal transformation. The physical motivation for the last result 
is that, for example, the infared phenomenon is expected to destroy 
normality. Finally, let us note that ~ + satisfies the interwining relation: 

~'t?+ : ? + a t  

Next, we study when and in what sense r is a perturbation of 
the modular dynamics. The following considerations are elementary, but 
essential in what follows. The detailed balance condition implies ~9) (see 
Section 2) 

d --itf s = fSd --it 

for t, s ~> 0. L e t f E  D(ln A), where i In d is the infinitesimal generator of the 
modular group d". Then, one has 

d ~ - i~  d 

and both terms in the above equality exist. Thus, 

fsD(ln A) c D(ln A) 

fs In A f = In d f s f  

for f ~  D(ln A). Furthermore, the semigroup theory implies 

(R;~(S) In zlf, g) = (R;~(S)f, In d g) (10) 

where f, g~D( ln  d), S is the infinitesimal generator of it,  2 is a complex 
number such that Re 2 > 0, and finally R~(S) denotes the resolvent of S 
at 2. 

Let us denote {R~(S)D(ln d)} by ~.  We deduce directly from (10) 

= ~( ln  d)  c~ ~(S)  

and 

R~(S) In A f----- In A R;~(S) f 

for f~D(lnA).~L2) We have thus shown that there is a dense subset 
@ c D(S)c~ D(ln A) invariant with respect to r and A ". Therefore, the set 

is a core for the infinitesimal generator of the semigroup gtzl " (cf. 
Corollary 3.1.7 in ref. 2). 
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Hence, the definition 

S - i l n  AIn (11) 

makes sense and describes the restriction of the infinitesimal generator to 
the core 9 .  Moreover, we can conclude that: The expression (11) describes 
the perturbation of the modular group A -it and this perturbation is such that 
the perturbed modular dynamics is equal to the dynamical semigroup r 

Next, let us consider a,-invariant state ~0 which belongs to ~0, ,  

2q~(zt(A)) = (~b, A i'f,Ag?) + (A-'t-~,A*s ~b) 

where ~ e  Vo. Assume A*~? and A ~ e @  (see the above discussion for 
definition of 9) .  Let us observe 

2 lira ~o(~,(A))-Zrp(A) 
l ~ + o O  

;o = dt(qk, A - i ' ( S - i l n A ) i , A s  

f? + d t ( A - i ' ( S - i l n A ) g , A * f 2 ,  qk) 

Thus, the detailed balance condition and the cluster property of co imply 
the integrability condition of the following function: 

~+ ~ t ~ (~b, zl - ~ ' ( S - / I n  A) f,Af2) (12) 

This condition is of interest because it can be considered as a 
generalization of the celebrated stability condition, which was introduced by 
Robinson ~ for the reversible dynamics. Hence, one can conclude that the 
detailed balance condition imposes a stability condition on the behavior of 
the pair (r,, co). 

We end this section with some concluding remarks. First of all, we 
wish to emphasize that the above-discussed stability property of the pair 
(co, %) follows as a result of the assumed detailed balance condition for 
(co, ~,). In other words, this result is not a property of the perturbed 
modular system associated with the pair (99l, s To see this fact, it is 
enough to observe that we have assumed a very weak form of a cluster 
property for (co, r,) and the assumed cluster condition involves the sub- 
algebra gl(v). Moreover, in our proofs, Conditions I and II have played an 
important role (compare the theorem and the corollary). It should be 
noted that according to Davies (ref. 14, w and Sz-Nagy and Foia~ 
(ref. 11, p. 274), it is not the general case that "c*ft converges strongly to a 
projection as t ~ + m. 
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On the other hand, for a weakly asymptotically Abelian system (see 
remark following the corollary) with a factorial faithful state it is possible 
to find such perturbations of modular dynamics that the generalized wave 
operators exist. But such a point of view demands a stronger ergodic 
assumption about the physical system than we have made. 

4. MODEL.  Q U A N T U M  H A R M O N I C  OSCILLATOR 

Let 6g be a C*-algebra generated by nonzero elements W(z), z e C, 
satisfying 

W(z)* = W(-z) 

W(z) W(z')= {exp[- i im(z .  ~')/2 ] } W(z + z') 

for all z, z ' e  C. 6~ is the CCR algebra over one-dimensional Hilbert space. 
Let us consider the map 

Z I----4" Z t ~ e - i c ~ 1 7 6  

for t e ~, COo>0, z e C. Obviously, there exists a unique one-parameter 
group of automorphisms ~0 of ~ such that 

.o(w(z)) = W(z,) 

Further, let us define the following state over ~ :  

~(W(z ) )  = e x p ( - Q a  1zl2/4) 

where Q a = ( 1  +e-a~~176 -1 for /~>0.  
Let us take the GNS triple ( ~ ,  lt(~), f2a) associated with (~ ,  ~a) and 

subsequently take the weak closure of rc(~) on YtL Thus, we obtain the 
concrete von Neumann algebra ~Y~ on ~ .  Clearly, ~ ~- cot~ = ~O ~. Hence, ~,~ 
induces a unitary implemented one-parameter group of automorphisms of 
n ( ~ )  which can be extended over 9J/. We will denote the extension by e,. 
It is easy to verify that the state ~ ( A ) =  (f2r AOa), A egx, satisfies the 
KMS condition with respect to e,. Thus, one can treat the e, evolution and 
the modular evolution as identicalJ 1s'~6'23) 

Further, the reversing operation ~r is defined in the following way: 

~(W(z))  = w(~), z ~ C  

and consequently a = ~ o f f o z  ~. Now, we introduce a semigroup time 
evolution rt, which one can interpret as describing the diffusion of a 
quantum particle in a harmonic well, ~7) 

~: W~(z)w-~ W~([exp( -2 t ) ]  z )exp{- �88  Izl 2 I - l - e x p ( - 2 2 t ) ] }  

where 2 is a positive fixed constant, t > 0, W,(. ) = rc o W(- ). 



Return to Equilibrium 429 

First note that as C ~ z~-~e-~tzeC is a contraction on C, z, is a 
completely positive map, z~: 1 r ( ~ ) ~ ( ~ ) .  Further, for each contraction 
T: C --, C there exists a contraction FQ(T): ~ ~ ~ such that 

FQ(T) W~(z) f2~ = {exp[ - ( Q y 4 ) ( [ z [  2 - [ Tz[2)] } W~(Tz) f2~ 

for all z e C. Second, let us define 

(u , f ) (x)  = e-ixt~'(x) 

and choose 

L(X)  = )~2 _}_ ~ ff ,~2(~, d x )  

Then u~ satisfies (fo, u, fo)= e -;J and one can prove that 

rt W~(z) = FQ(Vt)* W~(zfo) FQ(V,) 

where Vt=u  ,oi, i: C~ z~-~zfoe~2(N,  dx). 
The above observations are taken from Chapter 10 of ref. 18 and from 

ref. 17. It  clearly follows that r, has an ultraweak extension to a completely 
positive map on 93/. We will denote the extension by the same letter z. 
Hence, z, is a one-parameter  strongly positive semigroup over ~J~ and 
describes an irreversible process. (~7'19) Moreover,  ( r , , ~ )  satisfies the 
detailed balance condition. (2~ 

Let (p be a normal state on ~ ;  then 

~o(z,~(W~(z))) = exp{ - �88 [z] 2 [1 - e x p ( - 2 2 0 ]  } q~(W~([exp(-2 t ) ]  z)) 

Hence 

lim (z*~o)(W~(z)) = ~ ( W ~ ( z ) )  
t ~ o O  

This means that an arbitrary normal state on 9~1 evolves under the semi- 
group evolution r*  to the equilibrium state ~ .  Further, note 

Z t lira ~ ( W ~ ( z )  z,( W~( ))) = ~ ( W ~ ( z ) )  ~ (W~(z ' ) )  
t ~ o o  

for z, z '  e C, so the all assumptions of the corollary are satisfied. Therefore 
lira . . . .  q~((ztocr ,)(A)) exists. In the framework of our example one can 
compute this limit explicitly, and 

lim ~((zt o a_t)(W~(z)))  = ~ ( W ~ ( z ) )  
t ~ o o  

for z e C .  
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A P P E N D I X  

Here, we present a nontrivial model of a dynamical system for which 
Conditions I and II are satisfied. The model below is of a rather mathe- 
matical nature and the theory of Hilbert algebras is extensively used (see 
Chapter I, w in ref. 21). 

Let ~ be a separable Hilbert space, LP(J/g) the W*-algebra of all 
linear, bounded operators on ~ ,  and p be a strict positive density matrix 
on ~ ,  i.e., p = Z i  2iP<x,> where P<xi> are orthogonal projectors on the sub- 
space generated by the vectors xi, { x i } ~ y  is a basis in 9r 2 i> 0 for each 
i, 5Z~ 2~ = 1. Further, let ~ denote the set of all Hilbert-Schmidt operators 
on ~ .  Clearly, p l/:~ ~ and ~ is a Hilbert space with respect to the 
following inner product: 

((p, u)) = Tr p*u 

for p, u ~ 6L Now we define the following representation HL of 5 e ( ~ )  in 
~e(c~): 

HL(A)  a = Aa 

for A~Se(~eg), a e6L Let us denote the von Neumann algebra 
{HL(A); A ~ s by 93l. It is easy to check that: 

(1) pl/: is a cyclic and separating vector in ~ for 9J/. 

(2) The representation (HL(-), ~ ,  pl/z) is unitary equivalent to the 
cyclic representation of ~ ( ~ )  associated with the state Tr p(-). 

Next, we intend to construct a suitable conjugation Jk on 6(. Let us 
observe that: 

(i) The cone Vo has the form 

Vo = { Apl/2; A E ~,~(,,~), A />0}  c' . . . . .  

(ii) The modular operator A for (gJ/, pl/2) is such that for some dense 
subset 6g ~ = 

Aa = pap 

for a e d ~ To show the latter, let C, B be in 5 ~  Then 

( (Cp 1/2, zlBp~/2)) = ((zJ a/2Cpl/2, A 1/2Bp 1/2)) 

= ( ( J a  ~/~Bn ~/~, j A  ~/~cpl/~)) 

=_ ((B*p 1/2, C*pl/2)) 
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where j denotes the modular conjugation. Therefore, for any C~ 5e(Yg) 
and B ~ { f |  g; f, g ~ D(p -1/2) }, where ( f @  g) z = (f, z) g, f,  g, z e H ,  we 
have 

Tr pl/2c* AB pl/2 = Tr pl/2BC*pm 

= Tr C*pB = Tr pl/ZC*pBp-1/2 

= Tr pl/2C*pBpl/2p- 

In particular, one has Ap t/2 = p1/2 and V1/2 = {pl/2A; A ~ ~ ( ~ ) ,  A >~ 0}. 
Now, the following definition seems to be obvious. 

D e f i n i t i o n .  1. Let {xi} be the basis in ]g, associated with p by its 
spectral representation. Then 

df 
KU= K Z (xi, f )  xi = ~ (xi, f )  xi 

i i 

( f o r f ~ )  is a well-defined conjugation on ~ .  

2. The map J K ( a ) =  KaK defines a conjugation on 6~. 

'The above defined ~r has the following properties: JK(" ) maps Vo 
into Vo and j~(pl/2)= pl/2. A s  V 0 is a dual cone with respect to V1/2, to 
prove the first property of ~r it is enough to show that the inequality 

( (pl/2A', JK( Apl/Z) ) ) >~ 0 

holds for positive A, A' in 5e(Jt~). Therefore, let us observe that 

( (pl/2A', Jk(Apl/2) ) ) = Tr(pl/ZA') * JK(Ap 1/2) 

= Tr A'p 1/2KAp I/2K = Tr A'p 1/2KAKp 1/2 

= Tr(A') m pl/2KAKpl/2(A')I/2 >~ 0 

The second property of J~: is evident. Hence, one can conclude that J ~  
induces a reversing operation a on 93/(see Lemma 4.11 in ref. 8). 

Next, let us take a self-adjoint operator H ~  5 e (~ )  such that 

( i )  [eiH~ A i s ]=o ,  t , s~R  
(ii) eiH~ C 

(iii) eiHotpl/2 = pl/2 

where ~ denotes the natural cone. It is worth pointing out that 
such operators exist. Namely, let us consider a uniformly continuous, 
one-parameter group of *-automorphisms fit on 9J/ such that 

822/55/1-2-28 
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((p~/2, f i t (A)  pl/2))= ((pl/2, A p m ) )  for A e 9)1. Then, the properties (i)-(iii) 
follow from Corollaries 2.5.32 and 2.3.17 in ref. 2 and Lemma 2 in ref. 12. 

Let us form H =  Ho + J/~HoJK. Then 

and 

eiHt~ ~ 

eiHtp 1/2 = p 1/2 

for t ~ ~, where the first property of e ;m follows from the Trotter product 
formula and the fact that J K ~  c ~.  Let us consider e iI4t for positive time, 
t ~> 0. It is easy to see (cf. ref. 2, Theorem 3.2.18; ref. 8, Theorem 4.12) that 
r = eim induces a semigroup on 93l such that detailed balance condition is 
satisfied for (gJ l ,%,p l /2 ) .  Now we will consider perturbations of ~ 
(cf. ref. 2, Theorems 3.1.32, 3.1.33). As a first simple example we take the 
perturbation P =  - ( 4 - P p ~ a )  where Ppl/2 is the projection onto the sub- 
space generated by pl/2. 

It is easy to check (again use the product formula) that the perturbed 
semigroup ~ is a JK-self-adjoint semigroup such that r  ~ ~.  Moreover, 
fff strongly commutes with 3, f e p l / 2 = p m ,  and 3 l i m , _ o o ( f e ) . r  
lim t_~ ~ iff(r Therefore, Conditions I and II are satisfied. 

Next, we will describe a more complicated example. We take H as it 
was described before and we assume the dissipator D to be 

D = (log 3)2 

(dissipators 2D, 2 ~ ~ + can be treated in the same way), 
Since 

e x p [ -  t(log A)  2 ] = (27[) -1/2 f d/t(2) 

where d#(2 )=  const,  exp( -22 /4 t )  d2 and Ai'N c ~ ,  we deduce that 

e t(l~ z/)2~ c:: ~ 

Further, e -'~176 ~)2 is the semigroup of contractions and H is the self-adjoint 
operator in ~(6g).  Therefore, e ~m-~ is the semigroup of contractions. 
Hence, the product formula implies 

~ D ~  = eiHt-  Dt~  C 

Having proved this, it is elementary that (~t D, pl/2) satisfies the detailed 
balance condition. 

On the other hand, e ~m, t ~ ~,  commutes strongly with A. Thus, fD is 

3 Since [iH + P, -- iH+ P] f = 0 for an arbitrary vector f s  tY. 
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the normal semigroup and condition II is satisfied. So we can conclude that 
i~D= eim ~D,, t e ~+,  provides a class of dynamical semigroups for which 
Conditions I and II are satisfied. 

A C K N O W L E D G M E N T S  

I am indebted to D. W. Robinson, E. A. G. Weits, and M. Winnink 
for fruitful remarks. I am grateful to the Polish Ministry of Higher Educa- 
tion, Science, and Technology for partial support. 
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